RTFlash

Les ultrasons révèlent la vascularisation du cerveau humain jusqu’à l’échelle microscopique

Les vaisseaux sanguins du cerveau forment un réseau extrêmement complexe, dont le rôle est d’assurer l’alimentation des neurones en oxygène et en nutriments. Activité vasculaire et activité neuronale sont ainsi intimement liées, et nombre de maladies neurologiques ont pour cause des dysfonctionnements vasculaires.

Une difficulté pour diagnostiquer et soigner efficacement ces maladies est une connaissance partielle du fonctionnement des petits vaisseaux sanguins, due aux limitations des méthodes d’imagerie cérébro-vasculaire existantes. L’angiographie par scanner à rayons X ou par résonance magnétique combinée à l’injection d’agents de contraste (les deux méthodes les plus couramment utilisées à l’hôpital) discernent les artères cérébrales jusqu’à quelques dixièmes de millimètres de diamètre mais ne sont pas capables de détecter individuellement les plus petits capillaires dont le diamètre ne mesure que quelques microns (millièmes de millimètres !).

En outre, ces deux types d’angiographies ne donnent pas accès à l’imagerie dynamique des multiples échelles de ce réseau vasculaire. La solution proposée par le laboratoire Physique pour la médecine (ESPCI Paris –PSL/Inserm/CNRS) promet de combler cette lacune en fournissant les composantes cinématiques des flux sanguins à toutes les échelles du réseau vasculaire (des grosses artères aux petits capillaires), au moyen d’une technologie non-invasive, non-ionisante, accessible au chevet du patient et à relativement bas coût.

Les bulles de gaz microscopiques sont alors imagées au moyen d’une sonde échographique appliquée sur la tempe. En déterminant la position de millions de ces microbulles en quelques secondes, les chercheurs parviennent à reconstituer l’anatomie du réseau vasculaire à l’échelle microscopique, tout en accédant à des informations quantitatives sur les composantes dynamiques locales des flux sanguins. Jusqu’ici, aucune modalité d’imagerie médicale non invasive n’avait permis d’atteindre un tel résultat.

Cette nouvelle méthode a été baptisée microscopie par localisation ultrasonore (en anglais, ultrasound localisation microscopyou ULM). Si la technique avait été validée dès 2015 sur le petit animal, le défi était de taille dans le cas d’un patient humain adulte.

En premier lieu, le signal ultrasonore est perturbé lors de son passage à travers l’os crânien, ce qui dégrade sévèrement la qualité de l’imagerie. Des méthodes pour mesurer puis corriger ces perturbations ont donc été appliquées lors du traitement des signaux pour restaurer une qualité d’image optimale. D’autre part, il a été nécessaire de développer des algorithmes de correction de mouvement, tout mouvement macroscopique du cerveau annihilant la possibilité de localiser une microbulle avec une précision micrométrique.

Charlie Demené, maître de conférences à l’ESPCI Paris-PSL, en détaille les points clés : « Cette première chez l’humain est permise, en quelque sorte, par un alignement de planètes avec la mise au point conjointe de plusieurs techniques. Tout d’abord l’imagerie ultrarapide, qui fournit une énorme quantité de données en un temps très court et permet de séparer la signature  acoustique de chaque  microbulle individuelle.

Ensuite, la localisation ultrasonore qui permet de se libérer des limites de résolution inhérentes à la physique des ondes : lorsqu’on image un objet très petit, on obtient une tache floue plus grosse que l’objet lui-même. C’est ce qu’on appelle la limite de résolution spatiale. Mais si cet objet est isolé dans le champ de vue, on peut raisonnablement supposer que sa position exacte est le centre de la tache. Dans notre cas, ce sont les microbulles circulant dans le sang qui jouent le rôle d’objets isolés, et permettent de remonter à la position exacte de chaque vaisseau sanguin.

Enfin, observer l’écho de chaque microbulle permet de connaître précisément l’histoire de l’onde provenant de cet objet microscopique, et en particulier de retracer ce qui s’est passé à la traversée du crâne pour en corriger les perturbations ». Forts de ces nouveaux développements, les scientifiques ont pu réaliser la microscopie par localisation ultrasonore chez des patients au centre de neurosciences clinique de l’Université de Genève, en collaboration avec le professeur Fabienne Perren.

Chez un patient atteint d’un anévrisme, l’équipe a par exemple pu observer jusqu’aux plus infimes détails des flux sanguins dans la zone de l’anévrisme situé au centre du cerveau. Un outil de choix pour la prise en charge des patients de nouvelles performances d’imagerie vasculaire permettront de mieux comprendre les liens entre vascularisation du cerveau et maladies cérébrales.

Visualiser et quantifier des flux sanguins cérébraux, jusqu’ici invisibles directement faute de résolution et de sensibilité suffisantes, pourrait permettre, sur le plan fondamental, d’acquérir de nouvelles connaissances sur les liens entre activité vasculaire et neuronale et, sur le plan médical, d’accélérer la qualité et la précocité du diagnostic des maladies cérébro-vasculaires et de proposer des thérapies plus efficaces.

La microscopie par localisation ultrasonore facilitera l’accès diagnostic pour le patient et la mise en œuvre de l’examen médical pour le médecin, en comparaison aux techniques d’imagerie utilisées jusqu’ici : la technologie ultrasonore est moins coûteuse qu’une IRM ou un scanner, moins encombrante et utilisable au chevet du patient.

Article rédigé par Georges Simmonds pour RT Flash

CNRS

Noter cet article :

 

Vous serez certainement intéressé par ces articles :

Recommander cet article :

back-to-top