Matière
- Matière et Energie
- Energie
Un nouveau mode de stockage de l’hydrogène deux fois plus compact
- Tweeter
-
-
1 avis :
L'hydrogène (H2) est l'élément chimique le plus léger actuellement connu, ce qui en fait la solution énergétique la plus prometteuse, notamment comme alternative écologique pour la mobilité (voitures, camions, bateaux) et l'utilisation stationnaire (stockage d'énergie renouvelable intermittente, industrie lourde, ...). Le problème majeur rencontré aujourd’hui pour une utilisation à grande échelle, c’est sa densité importante, rendant son stockage très compliqué. A titre d’exemple, l'H2 comprimé nécessite une pression élevée, alors que l'hydrogène liquide nécessite l'utilisation de températures extrêmement basses (-253°C).
La solution ? L’utilisation de matériaux poreux, capables de fixer les molécules d'hydrogène à la surface de pores moléculaires, réduisant la pression requise et augmentant la température de stockage. Dans ce cadre, une équipe scientifique internationale, dirigée par Yaroslav Filinchuk, professeur à l’école de chimie de l'UCLouvain, repousse considérablement les limites de la densité volumétrique de l'hydrogène dans les matériaux poreux. Elle a découvert qu'une forme poreuse de borohydrure de magnésium, γ-Mg(BH4)2 = matériau cristallin, est capable de stocker une densité plus de deux fois supérieure à celle de l'hydrogène liquide. Cette découverte majeure est publiée dans la revue scientifique Nature Chemistry.
Concrètement, les scientifiques UCLouvain ont mis au jour de nouvelles liaisons entre molécules et atomes d’hydrogène, permettant à l'hydrogène de remplir les pores du matériau cristallin différemment qu'une molécule similaire d'azote. Des expériences plus détaillées ont permis de constater que le chargement complet en hydrogène est 3,5 fois plus dense qu'avec de l'azote dans le même matériau. Comment ? Grâce à la structure des pores, composée d’atomes d’hydrogène chargés négativement (alors qu’habituellement, ces structures sont neutres). Cette charge négative incite les molécules d’hydrogène à se positionner de manière à interagir hyper efficacement avec les atomes d’hydrogène, ce qui permet de les stocker de façon optimale (très dense).
Ce travail collaboratif ouvre la voie au stockage et au transport de l'hydrogène de manière compacte en tant que source d'énergie propre et renouvelable, pour les voitures roulant à l’hydrogène par exemple. Ainsi que de futurs matériaux ayant potentiellement une supraconductivité à haute température et une stabilité approchant des conditions ambiantes.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
Avancée majeure dans le stockage moléculaire de l'énergie
Environ la moitié de l'énergie mondiale est consommée sous forme de chaleur. Face au changement climatique et aux efforts que nous déployons en faveur de la transition énergétique, l’exploitation du ...
Optimiser les systèmes agrivoltaïques pour les cultures et l’énergie propre
Les installations agrivoltaïques offrent une protection contre les aléas climatiques – comme les fortes chaleurs ou les précipitations intenses – tout en favorisant la biodiversité par la création ...
Edito : Les énergies renouvelables vont s’imposer au niveau mondial...parce qu'elles sont plus rentables...
En dépit du développement considérable des énergies renouvelables depuis dix ans, les émissions mondiales de CO₂ liées à l’énergie ont continué d'augmenter de 410 millions de tonnes en 2023, pour ...
Recommander cet article :
- Nombre de consultations : 0
- Publié dans : Energie
- Partager :