Matière
- Matière et Energie
- Energie
Produire de l'hydrogène sans émissions de CO2 grâce au plasma froid
- Tweeter
-
-
1 avis :
Créée en 2017, Sakowin développe une solution permettant de produire, à prix compétitif, de l’hydrogène (H2) à partir du méthane (CH4). Une technologie basée sur la décomposition du CH4 sans oxygène par un plasma basse énergie, et qui n’engendre aucune émission de CO2. Elle permet même de produire, en plus de l’hydrogène, du carbone solide aux multiples applications industrielles. Sa mise sur le marché est prévue pour 2025.
Produire à partir d’électricité renouvelable par électrolyse de l’eau ne semble pas la seule voie possible pour décarboner la production de ce vecteur énergétique issu, pour l’heure, à 95 % de la transformation d’énergies fossiles. D’autres technologies se développent en effet et pourraient se révéler capables, elles aussi, de produire de l’hydrogène sans rejet de CO2.
En témoigne la solution imaginée par Sakowin, entreprise créée en 2017 par Gérard Gatt à Fréjus, dans la région Provence-Alpes-Côte d’Azur. Son principe de base : produire de l’hydrogène à partir de méthane… Une approche qui pourrait, a priori, rappeler celle utilisée actuellement pour produire près de 70 % de l’hydrogène dans le monde : le vaporeformage du gaz naturel. À une différence près, et pas des moindres : contrairement au vaporeformage, la solution sur laquelle mise Sakowin n’entraîne aucune émission de CO2.
Pour y parvenir, la start-up, qui compte aujourd’hui douze personnes, développe une technologie basée sur la plasmalyse du méthane, une décomposition de la molécule à l’aide d’un plasma basse énergie, généré par micro-ondes. « Notre solution fonctionne en l’absence d’oxygène, et dans le but d’atteindre des conditions énergétiques similaires à celles du vaporeformage ; c’est-à-dire à un coût énergétique très bas, et donc, potentiellement, à un coût de production de l’hydrogène très compétitif », souligne le président de l’entreprise, Gérard Gatt.
Utilisé comme matière première et non comme combustible, le méthane permet ainsi la production d’hydrogène sans émission de dioxyde de carbone. Au CO2 gazeux se substitue en effet un carbone sous forme solide : le "noir de carbone". Sans conséquence directe sur le climat, ce carbone solide trouve même de multiples applications industrielles, comme l’explique Gérard Gatt : « le carbone solide produit “en bonus” par notre procédé est aujourd’hui utilisé dans des marchés à haute valeur ajoutée : encres, pneumatiques… Et des marchés de masse pourraient, demain, également utiliser ce carbone si son coût baisse ; le bâtiment par exemple ou encore l’agriculture ».
À l’image du biochar, un charbon d’origine végétale issu de la pyrolyse de biomasse, le noir de carbone résultant du procédé développé par Sakowin pourrait en effet servir d’amendement pour les sols cultivés, améliorant notamment leurs capacités de rétention d’eau. Une application d’autant plus pertinente que, outre le méthane fossile, le biométhane issu de la méthanisation d’intrants agricoles peut être utilisé comme matière première pour le procédé développé par Sakowin. « Une exploitation agricole qui dispose d’un méthaniseur et qui produit donc son propre biométhane pourrait ainsi, avec notre technologie, le décomposer en hydrogène et carbone solide », fait valoir Gérard Gatt. « L’hydrogène pourrait être utilisé pour faire fonctionner le matériel agricole sans émission de CO2 et une partie du noir de carbone dans les champs. On aurait là une solution circulaire non seulement neutre en dioxyde de carbone mais même négative en CO2, le cycle captant plus de ce gaz à effet de serre qu’il n’en émet. Cette solution éviterait également des rejets de méthane, qui est un gaz à effet de serre 28 fois plus puissant que le CO2 ».
Côté coûts, le dirigeant estime à environ 7 € le prix à la pompe du kilo d’hydrogène issu d’une telle production agricole circulaire. De quoi en faire une solution d’ores et déjà compétitive, avant même que les améliorations qui restent à apporter à la technologie ne permettent d’en diminuer un peu plus le coût. Pour d’autres secteurs en revanche, le prix du biométhane reste aujourd’hui un frein à son utilisation pour produire de manière compétitive de l’hydrogène, comme le concède Gérard Gatt. « Nous avons devant nous 150 ans de stock de gaz fossile, on peut se permettre d’en utiliser une petite partie, le temps que le biométhane devienne compétitif en dehors de l’agriculture », estime cependant le président de l’entreprise. Outre ce secteur, Sakowin vise ainsi trois autres marchés : le transport routier, aérien, et le secteur de l’extraction de pétrole et de gaz.
Quatre clients sont déjà en phase de commande d’un prototype du réacteur que Sakowin prévoit de mettre sur le marché en 2025, sous forme d’armoire, installée en bout de ligne d’un réseau de distribution de gaz. « Les clients pourront donc conserver leurs infrastructures gazières telles qu’elles sont actuellement, en ajoutant simplement un module en bout de ligne pour convertir le gaz en hydrogène directement sur leur site, à la demande », décrit Gérard Gatt. Équipé d’un réacteur de 100 kW, un module devrait permettre la production de 200 à 300 kilos d’hydrogène par jour. Assemblés par centaines, ces dispositifs pourraient donc générer quotidiennement plusieurs tonnes d’hydrogène. « Sur les plates-formes pétrolières, par exemple, le but serait d’avoir de gros systèmes permettant d’extraire le pétrole sans émettre de CO2 », prévoit le président de Sakowin.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
La batterie qui sentait bon le sable chaud...
Des chercheurs du célèbre National Renewable Energy Laboratory (NREL), un laboratoire américain de Denver, spécialisé dans les énergies renouvelables, ont mis au point une technologie de stockage ...
Est-il possible de produire artificiellement de l'hydrogène naturel ?
Pourra-t-on un jour reproduire artificiellement les processus géologiques naturels qui provoquent la production d'hydrogène ? Peut-être, selon des scientifiques de l’Université du Texas à Austin (UT ...
L’oxyde de titane : la clé de l’avenir de l’hydrogène propre
Des chercheurs de la faculté d’ingénierie de l’université de Drexel, en Roumanie, ont réalisé une découverte prometteuse. Ils ont produit un matériau nanofilamentaire à base d’oxyde de titane ...
Recommander cet article :
- Nombre de consultations : 0
- Publié dans : Energie
- Partager :