RTFlash

RTFlash a besoin de vous pour continuer à exister !

Propulsé par HelloAsso

Matière

De l'énergie solaire bon marché grâce à des nanocristaux

Les panneaux solaires actuels, faits de silicium, sont onéreux. En plus, ils ont un gros défaut : ils ne transforment en électricité que la lumière visible du Soleil, pas les rayons infrarouges. Or, ces rayons chauds et invisibles représentent près de la moitié de l’énergie solaire qui atteint la Terre. Quel gaspillage ! Des scientifiques de partout dans le monde tentent donc de créer des panneaux capables d’absorber les infrarouges. Dongling Ma vient de surmonter le défi grâce à des nanomatériaux créés de toutes pièces dans son laboratoire ! Les nanomatériaux sont construits avec des « briques » infiniment petites, qui leur donnent des propriétés fabuleuses. Dongling Ma est tombée sous leur charme pendant son doctorat aux États-Unis : « Ces matériaux sont tellement fascinants ! Ils permettent de faire des choses incroyables ! ». À partir de sulfure de plomb — un minerai très abondant — la chercheuse a fabriqué de minuscules cristaux qui ne renferment que quelques centaines d’atomes. À cette échelle, on entre dans un nouveau monde qui ne répond plus aux lois de la physique classique. Ici, c’est la physique quantique qui règne en maître.

Dans notre monde, pour le sulfure de plomb par exemple, ce phénomène n’est possible que pour la lumière d’une certaine « couleur ». Mais à l’échelle nanométrique, le sulfure de plomb devient changeant. Plus on rapetisse la taille du cristal — qu’on appelle « boîte quantique » — plus la lumière qu’il absorbe tire vers le bleu. Au contraire, plus le cristal grossit, plus il « boit » de la lumière rouge. Attention : les rayons ne sont vraiment ni rouges ni bleus puisque nous sommes dans l’infrarouge et non le visible. Mais le principe est le même… Dongling Ma a créé un nanocristal capable d’absorber des rayons solaires de différentes fréquences simplement en changeant sa taille. Comme si le cristal était le bouton d’un poste de radio permettant de syntoniser différentes fréquences !

Dans son laboratoire, Dongling Ma montre la « boîte à gants » dans laquelle elle fabrique ses petites merveilles. Cet instrument très populaire chez les chimistes est une enceinte vitrée percée de deux trous dans lesquels passent deux longs gants caoutchoutés. Les scientifiques manipulent avec ces gants des cristaux d’une pureté extrême. Pour éviter toute contamination, l’air de l’enceinte a été remplacé par un gaz inerte : l’azote ! Dongling Ma explique qu’en empilant des boîtes quantiques de différentes tailles les unes sur les autres, on obtient un matériau capable d’absorber toute une gamme de rayons infrarouges. Fini le gaspillage !

Mais quelques nanocristaux ne suffisent pas pour avoir une cellule solaire. Il reste encore à acheminer les électrons arrachés jusqu’à une électrode... Pour y arriver, Dongling a collé ses cristaux sur des nanotubes de carbone, les structures-vedettes de la nanotechnologie. Ces longs spaghettis vides à l’intérieur agissent ici comme des mini fils électriques qui aspirent les électrons libérés et les envoient vers une des électrodes de la cellule solaire, créant ainsi le courant électrique tant recherché.

Dongling Ma est bien fière de ses cellules solaires qui absorbent les rayons infrarouges. Pour l’instant, il ne s’agit que d’un prototype dont les performances ne sont pas encore optimisées. Mais quand elles le seront, ses cellules solaires pourraient devenir une alternative intéressante aux panneaux de silicium. Bien qu’elles ne convertiront pas autant d’énergie solaire en électricité que ces derniers — qui sont difficiles à battre avec leur taux de conversion de 15 à 20 % — leur bas prix jouerait en leur faveur. Autre avantage : alors que les panneaux de silicium sont rigides, ceux faits de ces nanomatériaux seraient flexibles. On pourrait donc les utiliser sur toutes sortes de surfaces : carrosserie de voiture, vêtements, lampadaires, toiture, etc.

Enerzine

Noter cet article :

 

Vous serez certainement intéressé par ces articles :

Recommander cet article :

back-to-top