TIC
- Information et Communication
- Informatique
Un -code-barres quantique- pour lutter contre la contrefaçon
- Tweeter
-
-
2 avis :
La vente de faux représente non seulement un fléau économique majeur (461 milliards de dollars par an selon l'OCDE, soit environ 1 % du produit mondial brut) mais également un drame humain : 120.000 personnes meurent chaque année en Afrique, juste à cause des faux médicaments anti-malaria, selon l'OMS.
Mais les choses pourraient bien changer avec la découverte d'une équipe de chercheurs de l'Université de Lancaster (GB). Baptisé Q-ID, ce code-barres quantique se veut en principe infalsifiable. Ces scientifiques ont trouvé un moyen de créer des "signatures" atomiques uniques. Cerise sur le gâteau : il suffit d'un simple smartphone (ou d'un capteur bon marché) pour vérifier cette signature et s'assurer que l'on n'a pas affaire à une contrefaçon.
Le système est minuscule, mille fois plus petit que l'épaisseur d'un cheveu. Il serait ainsi possible de l'intégrer à tout et n'importe quoi : vêtements, voitures bien sûr, mais aussi médicaments, billets de banque, objets connectés, etc. Les chercheurs envisagent même de l'intégrer directement à des aliments (mais n'ont pas encore réalisé de tests sanitaires).
Cette technologie, brevetée et qui pourrait être disponible pour le public d'ici moins d'un an, sera vendue par Quantum Base, une start-up créée par l'université. Si la création de ces codes-barres est bon marché, comme l'affirment les chercheurs, cette découverte pourrait même servir à bien d'autres choses.
Comment fonctionne cette technologie ? Tout se passe au niveau quantique, dans l'infiniment petit. Les chercheurs utilisent une technique appelée "confinement quantique". Pour faire simple, ils vont utiliser un ensemble d'atomes placés dans un ordre bien particulier (un réseau cristallin).
Cela force les électrons (les petites particules qui gravitent autour du noyau des atomes et dont le mouvement est à la base de l'électricité) à se déplacer d'une manière très précise. Mieux : à chaque fois qu'une structure de ce type est créée, ce confinement quantique est différent. Ainsi, chaque création possède une signature, avec un déplacement des électrons spécifique, unique.
Le problème, c'est qu'il est très difficile de repérer ce cheminement des électrons. Pour réussir ce tour de force, les chercheurs ont utilisé une caractéristique particulière des matériaux en 2D, à l'instar du célèbre graphène. Ce sont des structures entièrement plates, composées d'atomes.
Ils ont de très nombreuses propriétés étonnantes. Ici, celle qui nous intéresse, c'est leur capacité à réfléchir la lumière. Quand on éclaire une structure de ce type, cela excite les électrons qui se mettent à bouger. Puis ils finissent par se calmer. Mais en faisant cela, ils émettent à leur tour un signal lumineux lié à leur mouvement... justement limité par le confinement quantique. Il suffit donc de diriger une lumière particulière vers ce minuscule code-barres, puis de déchiffrer le signal lumineux émis en retour, unique et impossible à copier.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
Google réalise la première simulation quantique d’une réaction chimique
L’équipe Google AI Quantum a réussi à modéliser une réaction chimique sur son Sycamore, un processeur de 54 qbits. Ils sont partis d’une molécule de diimide (aussi appelé diazène) et ont simulé une ...
Une intelligence artificielle détecte les tumeurs du cerveau en temps réel
Dénicher les tumeurs au cerveau le plus tôt possible est essentiel pour augmenter les chances de guérison des patients. C'est pourquoi une nouvelle technique de détection développée par des ...
Google teste un système basé sur l’IA pour aider les personnes aveugles à faire leur footing
C’est en collaboration avec l’organisation à but non-lucratif Guiding Eyes for the Blind, que Google a développé « Project Guideline », un système basé sur l’intelligence artificielle qui a pour ...
Recommander cet article :
- Nombre de consultations : 434
- Publié dans : Informatique
- Partager :