Matière
- Matière et Energie
- Physique
Une réduction active du bruit par ionisation de l'air
- Tweeter
-
-
0 avis :
Saviez-vous que l’on peut utiliser des câbles pour ioniser l’air et produire un haut-parleur ? En quelques mots, il est possible de générer du son à partir d’un champ électrique entre deux câbles parallèles – autrement dit, un transducteur plasma – assez puissant pour ioniser les particules de l’atmosphère. Les ions chargés sont accélérés le long des lignes du champ magnétique et poussent l’air résiduel, non ionisé, de telle sorte qu’il produit un son.
L’idée de haut-parleur à plasma n’est pas nouvelle mais les scientifiques de l’EPFL (Ecole Polytechnique Fédérale de Lausanne) l’ont poussée plus loin et ont construit une démonstration de transducteur plasma. Il s’agit d’étudier la problématique de la réduction du bruit. L’équipe a produit un concept innovant, appelé "métacouche plasmacoustique" (plasmacoustic metalayer) que l’on peut déployer pour supprimer les sons.
Ces scientifiques étaient intrigués à l’idée d’utiliser le plasma pour réduire le bruit, parce que l’approche permet de s’affranchir de l’élément le plus important des haut-parleurs conventionnels : la membrane. Ces haut-parleurs, comme ceux que l’on trouve dans votre voiture ou à votre domicile, sont l’une des technologies les plus étudiées pour des solutions de réduction active du bruit. "Active", parce que l’on peut contrôler la membrane pour éliminer divers sons, par opposition à un mur qui s’acquitterait de la même tâche de manière passive.
Mais avec des haut-parleurs conventionnels comme absorbeurs de sons, la membrane limite la gamme de fréquences des opérations. Pour absorber le bruit, la membrane agit mécaniquement, en vibrant pour supprimer les ondes sonores dans l’air. Le poids relativement élevé de la membrane, c’est-à-dire son inertie, limite sa capacité à interagir de manière efficace avec des sons qui changent rapidement ou avec de hautes fréquences.
« Nous voulions réduire autant que possible l’effet de la membrane à cause de sa lourdeur », explique Stanislav Sergeev, postdoctorant au laboratoire d’acoustique de l’EPFL et premier auteur. « D’abord, on ionise la fine couche d’air entre les électrodes - ce que nous appelons la métacouche plasmacoustique. Maintenant qu’elles sont chargées électriquement, ces mêmes particules atmosphériques répondent instantanément aux commandes externes sur le champ électrique et interagissent efficacement avec les vibrations sonores de l’air alentour pour les supprimer ».
Stanislav Sergeev poursuit : « Comme nous nous y attendions, le système de contrôle électrique du plasma et l’environnement acoustique communiquent bien plus rapidement qu’avec une membrane ».
Le plasma n’est pas seulement efficace à haute fréquence. Il est aussi versatile, et l’on peut le régler pour qu’il agisse également avec les basses fréquences. En effet, les scientifiques montrent que l’on peut contrôler les dynamiques des fines couches de plasma d’air pour qu’elles interagissent avec le son largement au-dessous de sa longueur d’onde, répondent activement au bruit et le suppriment sur une large bande de fréquences. La nature active du système est centrale : les technologies passives de réduction de bruit sont limitées en termes de bandes de fréquences contrôlables.
L’absorbeur plasma est aussi plus compact que les solutions conventionnelles. Parce qu’il exploite la physique unique des métacouches plasmacoustiques, les scientifiques ont pu démontrer expérimentalement une parfaite absorption du son : « 100 % de l’intensité du son est absorbée par la métacouche et rien n’est renvoyé en retour », explique Hervé Lissek, maître d’enseignement et de recherche au groupe acoustique de l’EPFL. L’équipe montre aussi que l’on peut adapter les réflexions acoustiques, depuis la gamme des hertz jusqu’aux kilohertz, avec des couches de plasma transparentes, épaisses de seulement un millième de la longueur d’onde donnée – une dimension bien plus petite que les solutions conventionnelles de réduction de bruit.
Pour donner une idée de la compacité de l’absorbeur plasma, imaginez un son audible d'une basse fréquence de 20 Hz – soit une longueur d’onde de 17 mètres. La couche de plasma ne doit être large que de 17 millimètres pour absorber le bruit, alors que la plupart des solutions conventionnelles, comme les murs antibruit, devraient afficher une épaisseur de quatre mètres, ce qui limite souvent leur faisabilité.
« Contrairement aux atténuateurs de bruit conventionnels basés sur les matériaux poreux ou des structures résonnantes, l’aspect le plus extraordinaire de notre concept est sa nature éthérée, en quelque sorte. Nous avons découvert un mécanisme entièrement nouveau d’absorption phonique, que l’on peut faire aussi fin et léger que possible, et qui ouvre de nouveaux territoires en termes de contrôle du bruit là où l’espace et le poids sont importants, tout particulièrement à basses fréquences », explique Hervé Lissek.
Article rédigé par Georges Simmonds pour RT Flash
Noter cet article :
Vous serez certainement intéressé par ces articles :
Une boussole quantique révolutionnaire testée dans le métro de Londres
Les systèmes de navigation actuels, comme le GPS, sont omniprésents et essentiels dans notre vie quotidienne, que ce soit pour conduire, explorer ou même suivre des livraisons. Cependant, ces ...
Des physiciens réussissent pour la première fois à provoquer l'intrication quantique de deux molécules
Des physiciens américains de l'Université de Princeton ont réussi pour la première fois à provoquer et contrôler une intrication quantique entre deux molécules. Ce phénomène d'intrication quantique ...
Un accélérateur de particules de seulement 20 mètres établit un nouveau record de puissance
Des chercheurs de l’université du Texas à Austin ont réussi à établir un nouveau record en matière de puissance avec un accélérateur de particules compact. Les accélérateurs de particules ont ...
Recommander cet article :
- Nombre de consultations : 0
- Publié dans : Physique
- Partager :