Matière
- Matière et Energie
- Energie
Un nouveau pas vers la maîtrise de la fusion nucléaire
- Tweeter
-
-
1 avis :
Les chercheurs sont parvenus à stopper la croissance des instabilités au cœur d’un réacteur à fusion, une prouesse inédite ! Comment y sont-ils parvenus ? Retour sur cette énergie aussi prometteuse que complexe à maîtriser.
La fusion cherche à reproduire l’énergie du Soleil dans un réacteur. Lorsqu’il est chauffé à plusieurs millions de degrés, le gaz devient ce qu’on appelle un plasma. Il arrive qu’une instabilité apparaisse, grandisse et perturbe assez le plasma pour que celui-ci vibre, malgré le champ magnétique utilisé pour le contenir. S’il touche les parois du réacteur dans lequel il se trouve, le plasma se refroidit rapidement et crée alors des forces électromagnétiques importantes dans la structure de la machine.
Le défi était de réduire les instabilités à l’intérieur même du plasma pour qu’elles ne croissent pas, tout en permettant au réacteur de fonctionner. Il fallait donc travailler avec la configuration particulière des réacteurs, où le plasma est très fortement confiné par le champ magnétique. Jonathan Graves et ses collègues du Centre de recherches en physique des plasmas de l’EPFL ont ajusté une antenne qui émet un rayonnement électromagnétique pour juguler ces instabilités à leur apparition directement dans la région où elles se forment, sans perturber le reste de l'installation.
Les physiciens ont d’abord réalisé des simulations pour vérifier dans quelle mesure la fréquence du rayonnement et l’endroit où il est appliqué permettent de supprimer les instabilités. Ensuite, ils ont réalisé des tests pour confirmer leurs calculs. L’intérêt de leur approche est d’avoir utilisé des antennes servant à chauffer le plasma et déjà présentes dans le Joint european torus (JET), le plus grand réacteur en fonction actuellement. Résultat surprenant, les simulations et les tests ont montré qu’il est possible de combiner chauffage et suppression des instabilités en dirigeant le rayonnement non pas exactement au centre du plasma, mais légèrement à côté.
Les prochaines étapes consistent à ajouter un système de détection pour permettre de neutraliser les instabilités en temps réel sur de plus longues durées. Ces avancées pourront ensuite être implémentées sur le réacteur à fusion ITER, en développement dans le Sud de la France.
Noter cet article :
Vous serez certainement intéressé par ces articles :

Un catalyseur précis pour faire des produits chimiques durables
Des ingénieurs chimistes de l’EPFL ont développé une nouvelle méthode de production de catalyseur, motivés par la perspective de transformer des gaz à effet de serre, comme le dioxyde de carbone, en ...

Une brique en terre cuite qui rafraichit les habitations
Deux étudiants de Zurich, Andrin Stocker et Luc Schweizer, ont conçu un système de refroidissement innovant qui peut rafraîchir les espaces publics. Leurs objectifs ? Répondre au problème croissant ...

Edito : Moteur à plasma et propulsion nucléaire pourraient révolutionner l'aviation et les voyages spatiaux
Cette semaine, je reviens sur le sujet passionnant des progrès en matière de propulsion aérienne et spatiale. Cette question, que j’aborde régulièrement dans RT Flash, a pris récemment une ...
Recommander cet article :
- Nombre de consultations : 841
- Publié dans : Energie
- Partager :